
Personalized Handwriting Recognition via Biased Regularization

Wolf Kienzle1 kienzle@tuebingen.mpg.de
Kumar Chellapilla kumarc@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Abstract

We present a new approach to personalized
handwriting recognition. The problem, also
known as writer adaptation, consists of con-
verting a generic (user-independent) recog-
nizer into a personalized (user-dependent)
one, which has an improved recognition rate
for a particular user. The adaptation step
usually involves user-specific samples, which
leads to the fundamental question of how to
fuse this new information with that captured
by the generic recognizer. We propose adapt-
ing the recognizer by minimizing a regular-
ized risk functional (a modified SVM) where
the prior knowledge from the generic recog-
nizer enters through a modified regulariza-
tion term. The result is a simple personal-
ization framework with very good practical
properties. Experiments on a 100 class real-
world data set show that the number of errors
can be reduced by over 40% with as few as
five user samples per character.

1. Introduction

This paper addresses the personalization of a hand-
writing recognizer, as found in computer applications
where the primary input device is not a keyboard but
a digital pen. The basic idea is to increase the recog-
nition rate for a specific user by adapting the recog-
nizer to her personal writing style. The problem is
also known as writer adaptation and has been exten-
sively studied e.g. by Matić et al. (1993); Platt and
Matić (1997); Brakensiek et al. (2001); Connell and
Jain (2002). Writer adaptation is gaining new impor-
tance as devices such as Tablet PCs, PDAs (personal
digital assistants), and SmartPhones (cell phones with

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

PDA capabilities) are becoming increasingly popular.
The rationale behind personalizing a recognizer is sim-
ple: since handwriting is inherently unique, one ex-
pects that — given realistic design constraints — a
personalized recognizer leads to better performance on
the corresponding user’s data than a generic recognizer
which has to work for a variety of users.

In practice, the recognizer has to adapt to a user’s
writing style via sample data which requires explic-
itly prompting the user for training samples. In terms
of usability, this is expensive and as a consequence
the amount of personalization data will be very lim-
ited. Also, combining this new information with that
already captured by the generic recognizer is a chal-
lenging problem. We propose solving the personaliza-
tion problem by minimizing a modified regularized risk
functional — in our case a modified support vector
machine (SVM) — on the personalization data. We
show that this technique, called biased regularization,
provides a principled way for trading off generic and
user-specific information and leads to state-of-the-art
results in writer adaptation.

The paper is organized as follows. The model of our
recognizer is described in Section 2. A brief intro-
duction to SVMs is given in Section 3. This may be
skipped by readers familiar with the subject. Biased
regularization is introduced in Section 4, the result-
ing algorithm is discussed in Section 5. Sections 6
through 8 give experimental results, which are com-
pared against previous approaches in Section 9. The
paper concludes with a brief discussion in Section 10
and an appendix on the use of kernels.

2. The Model

Building a character recognizer requires solving a
multi-class classification problem. In the case of our
Latin character set (Section 6) the number of classes

1Current address: Max-Planck Institute for Biological
Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany.

Personalized Handwriting Recognition via Biased Regularization

is n = 100. The model that we use is a pairwise multi-
class SVM classifier, i.e. it consists of an ensemble of
all possible binary 1-vs-1 SVM classifiers. For a 100
class problem, there are

(
n
2

)
= 4, 950 pairwise classi-

fiers. The 4,950 outputs (all ±1) are combined into a
single output through majority voting, i.e. we simply
count the number of wins and output the class label
that won most often. There exist other, equally plau-
sible SVM-based multi-class models such as 1-vs-rest,
DAGSVM and monolithic methods (Hsu & Lin, 2002).
We chose the 1-vs-1 architecture since it is easy to im-
plement, scales to our 100 class problem, and is known
to work reasonably well in practice. However, the per-
sonalization approach presented below is by no means
restricted to this particular choice.

The model is as follows. For a given input x, each pair-
wise classifier i-vs-j produces a binary output hij(x) ∈
{1,−1}, indicating whether it will vote for class i or j,
respectively. The hij are thresholded linear functions
of the form

hij(x) = sgn(w >
ij x + bij) (1)

The output of the recognizer is an integer between one
and n, computed via

f(x) = arg max
i

[∑

k

hik(x)−
∑

k

hki(x)

]
(2)

For notational convenience, we now drop the class in-
dices ij, since all 1-vs-1 classifiers are treated indepen-
dently and identically. This allows us to discuss the
ideas below using a single binary classifier h(x), two
classes {−1, 1}, and one set of parameters w and b.

3. The Generic Recognizer

The generic recognizer consists of the above multi-class
model with the binary classifiers h(x) trained as lin-
ear soft margin SVMs. For h(x) to be an SVM, its
parameters w and b have to minimize the regularized
risk

R(w, b) =
1
2
‖w‖2 + C

m∑

i=1

[
1− yi(w>xi + b)

]
+

(3)

Here, the right term denotes the data fit on the m
training points, measured by the hinge loss L(ξ) =
[1− ξ]+ = max{0, 1− ξ}. The left term is the regular-
izer which ensures that the problem is well-posed by
penalizing large components of w and thus implements
the maximum margin principle (Schölkopf & Smola,
2002). The tradeoff between a small ‖w‖, i.e. a large
margin, and a good data fit has to be made a priori

by the choice of the regularization parameter C. The
problem of how to choose this parameter will be ad-
dressed in Section 7.

The standard way of looking at an SVM however, is
through the dual problem of minimizing (3), namely

min 1
2

∑m
i,j=1 αiαjyiyjx>i xj −

∑m
i=1 αi

s.t. 0 ≤ αi ≤ C∑m
i=1 αiyi = 0

(4)

The derivation can be found in Schölkopf and Smola
(2002); Chang and Lin (2001). Both problems (3) and
(4) are equivalent. Given the solution to the dual, the
optimal primal parameter w corresponds to

w =
m∑

i=1

αiyixi. (5)

Note that the form of the solution (5) implies that
the normal of the decision hyperplane (1) lies in the
span of the training points xi. The well-known repre-
senter theorem (Kimeldorf & Wahba, 1971; Schölkopf
et al., 2001) states that this is indeed the case for any
loss function, and for any regularizer that is a strictly
monotonic increasing function of ‖w‖. We will return
to this result in Section 4. Also, note that in the dual
formulation (5), C bounds the magnitude of the co-
efficients yiαi and therefore limits the effect of the
training points on the solution (5). This is in agree-
ment with the role of C in the primal formulation (3),
namely that of controlling the effect of the data fit
term.

4. Biased Regularization

Let us suppose that we have the generic recognizer plus
a small number of new user-specific training samples.
Also, we assume that the original (user-independent)
training samples used to build the generic recognizer
are no longer available.

To motivate our approach, note that the regularization
term ‖w‖2 in (3) encodes the prior knowledge about
small w being preferable. This is based on various
related ideas such as the Occam’s Razor, smoothness
of the decision boundary, or in the particular case of
SVMs, the maximum margin principle. If we fully ig-
nore the data fit term by setting C = 0, the solution
becomes w = 0. In a way, w = 0 is our safest bet in
case of unreliable or insufficient data.

The idea of this work is to exploit this regulariza-
tion mechanism for personalization by exchanging the
w = 0 prior with the parameters of the generic recog-
nizer. To this end, we propose retraining each pairwise

Personalized Handwriting Recognition via Biased Regularization

classifier by minimizing

R(w, b) =
1
2
‖w −w0‖2 + C

m∑

i=1

[
1− yi(w>xi + b)

]
+

(6)
where w0 is the parameter vector of the correspond-
ing pairwise classifier in the generic recognizer, and
(xi, yi), i = 1 . . .m are the new user-specific examples
for the respective binary problem. Note that (6) is
very similar to (3), with the only difference being the
bias towards w0 rather than 0, hence the term biased
regularization. In particular, setting w0 = 0 makes
both problems identical, indicating that the generic
recognizer is a special case of the personalized one.

The dual of (6) is given by

min 1
2

∑m
i,j=1 αiαjyiyjx>i xj −

∑m
i=1 αi(1− ωi)

s.t. 0 ≤ αi ≤ C∑m
i=1 αiyi = 0

(7)
where

ωi = yiw>
0 xi. (8)

The derivation is completely analogous to the stan-
dard (w0-free) case and the problem in (4) becomes a
special case of the problem in (7), namely for w0 = 0.
Analogously to (5), the optimal solution satisfies

w = w0 +
m∑

i=1

αiyixi. (9)

The form of (9) makes intuitive sense: the prior knowl-
edge from the user-independent data is represented by
w0, whereas the user-specific data enter as a linear
combination whose coefficients are bounded by C. In
particular, if we set C to zero, we get back the generic
recognizer w0.

It should be mentioned that the possibility of gener-
alizing the regularizer in this way has been pointed
out in Schölkopf et al. (2001), Remark 1. There, the
authors state that the representer theorem still holds
in the presence of an additional regularization term
−w>

0 w, which adds an extra multiple of w0 to the
solution. By expanding the square term in (6) and
noting the multiple of w0 in (9), one can see that their
generalization of the regularizer is equivalent to our
method. As a consequence, the biased regularization
approach to personalization is very general and can be
extended to arbitrary loss functions and a wide range
of regularizers.

Finally, biased regularization can also be motivated
from a MAP (maximum a posteriori) interpretation of
SVMs (Sollich, 2000), where the L2-regularizer comes

from a Gaussian process prior on w. There, using
w0 simply means that this Normal distribution has a
nonzero — instead of the usual zero — mean.

5. Personalization Algorithm

This section describes how to implement SVMs with
biased regularization (7) for personalization. Solving
standard SVMs (4) efficiently is a well studied prob-
lem and several good implementations exist. Sequen-
tial Minimal Optimization (SMO) (Platt, 1998) is the
perhaps most commonly used algorithm for solving
(4), for example as in LIBSVM (Chang & Lin, 2001).
SMO can be easily adapted to solve (7) instead of (4),
since the only difference is a translation of the objec-
tive function in α-space. In SMO, there are basically
two mechanisms: one that follows the gradient (or a
related decent direction) downhill and one that makes
sure that every iterate satisfies the constraints. With
biased regularization, the gradient changes only by the
constant ωi, while the constraints stay the same. This
simple change can be readily applied to any standard
SMO implementation.

Before we give the actual pseudo code, a subtlety
about the decision threshold b in (1) needs to be ad-
dressed. Suppose the generic model uses some value
b0. One could argue that b0 is just as much part of our
prior knowledge as w0, and should be taken into con-
sideration accordingly. On the other hand, the non-
penalized b makes the problem (6) translation invari-
ant, and we might wish to retain this property during
personalization. It is not clear which of the two ap-
proaches will give better results, and the decision will
mostly be determined by the designer’s personal pref-
erences.

In the current study, we decided to put a penalty on
deviations from b0. Mainly for the sake of simplicity,
we use the same penalty as for the deviations from
w0. This is achieved by making the following changes
to the method: we replace

x>i ← (x>i , 1), i = 1 . . .m
w>

0 ← (w>
0 , b0)

w> ← (w>, b)
(10)

and minimize

R(w) =
1
2
‖w −w0‖2 + C

m∑

i=1

[
1− yi(w>xi)

]
+

(11)

with respect to w. Note that this implicitly introduces
the term 1

2 (b− b0)2, which penalizes deviations of the
personalized threshold from b0. The problem now has
the form of a linear SVM without a threshold, wherein

Personalized Handwriting Recognition via Biased Regularization

Algorithm 1
SVM training with biased regularization (BRSVM)

1. Initialization:
αi = 0, ∀i
ωi = yiw>

0 xi, ∀i
2. Gradient:

si = yi

∑m
j=1 yjαjx>j xi − 1 + ωi, ∀i

3. Selection:
find k with either

• αk = 0 ∧ sk ≤ 0, or
• 0 < αk < C ∧ sk 6= 0, or
• αk = C ∧ sk ≥ 0.

if no such k exists, exit

4. Update:
αk ← min{max{αk − sk

xkxk
, 0}, C}

goto 2

the dual reads

min 1
2

∑m
i,j=1 αiαjyiyjx>i xj −

∑m
i=1 αi(1− ωi)

s.t. 0 ≤ αi ≤ C
(12)

In comparison with (7), the equality constraint has
vanished in (12). In the context of standard SVMs, the
Kernel Adatron (KA) algorithm (Friess et al., 1998;
Shawe-Taylor & Cristianini, 2004) may be viewed as a
simplified version of SMO for cases with no threshold
b, i.e. no equality constraint in the dual. As with SMO,
KA is readily adapted to solve (12), the pseudo code
is given as Algorithm 1. Line 1 initializes the coeffi-
cients to zero, and pre-computes the constant gradient
offset ωi. Lines 2 and 3 find a descent direction, and
line 4 updates the coefficient αk, subject to the con-
straint 0 ≤ αk ≤ C. The find in Line 3 is deliberately
loosely specified. In our implementation, we pick the k
with the maximum |sk|, which is a simple and popular
choice (see Chang and Lin (2001)), but other heuristics
are possible (Friess et al., 1998). Algorithm 1 reduces
to KA (modulo the selection heuristic) for w0 = 0.

6. Data Sets

The performance of our method is tested on two real-
world data sets, A and B. Data samples in both sets
are uniformly distributed over 100 possible western
handwritten character classes given by

Figure 1. A random sample from data set A.

The number of samples per user, however, varies be-
tween roughly 100 and 3,000. Each character sample
consists of a class label y ∈ {1, . . . , 100} and a feature
vector x ∈ R65. The features have been computed
from ink stroke data, as in Rowley et al. (2002) and
references (they are essentially coefficients of Tcheby-
chev polynomials fitted to the ink strokes).

Data set A contains 200,000 handwritten characters
from 215 users. We split set A into training (85%) and
test (15%) sets. Data set B contains 84,000 samples
from 21 users that did not contribute to set A. It has
40 samples per character and user. We also split set B
into training and test set (30 and 10 samples of each
character, respectively). A sample from set A is shown
in Figure 1.

7. Building the Generic Recognizer

Prior to training the generic recognizer, we ran a model
selection experiment to fix the regularization parame-
ter C. For the sake of simplicity, we decided to use the
same value of C for all 1-vs-1 classifiers. We computed
cross-validation errors (8 folds) on training set A for
various values of C (from 10−1 to 104), and chose the
one that gave the lowest error. The 1-vs-1 SVMs were
trained using a publicly available Matlab wrapper for
LIBSVM (Chang & Lin, 2001). Figure 2 presents the

Personalized Handwriting Recognition via Biased Regularization

−1 0.3 1.5 2.8 4
0.05

0.07

0.09

0.11

0.13

0.15

log10(C)

er
ro

r

Figure 2. Fixing the regularization parameter C for the
generic classifier. The solid line shows the mean cross-
validation error for various choices of C, the dotted lines
denote one standard deviation. The minimum is attained
between C = 10 and C = 100.

cross-validation error as a function of C. As C is in-
creased, the error first drops, reaches a minimum in
the range of 10 to 100, and then increases slightly, as
the model starts to overfit. As long as the value of C is
above some minimum value, its effect on performance
is not dramatic. Given that C varies over five orders of
magnitude, the error performance seems rather insen-
sitive to a poor choice of C. Based on these results,
C was set to 20, producing an 8.4% error in cross-
validation, and 8.2% error on test set A. In terms
of computation time, a direct Matlab implementation
yielded over 1, 700 predictions per second on a 2GHz
PC.

8. Personalization Experiments

At this point we discarded the generic training set
A and focused on personalization performance on set
B. The biased regularization approach was compared
with from-scratch retraining, i.e. with simply training
standard SVMs as before, albeit on personal data this
time. To distinguish between the two methods, we will
refer to the biased regularization method (Algorithm
1) as BRSVM, and to from-scratch retraining (stan-
dard SVM) simply as SVM.

8.1. Model Selection

Although C = 20 was found to work well for the
generic recognizer (Section 7), we ran another model
selection experiment to (re-) fix the regularization pa-
rameter C for personalization. We did this for two
reasons. First, the optimal value for C may vary with
the number of training samples (Schölkopf & Smola,
2002) and could change as the training set size for per-
sonalization (data set B) is two orders of magnitude
smaller than for the generic recognizer (data set A).
Second, C was chosen for a standard SVM, and might
be inappropriate for BRSVM.

We computed cross validation errors (8 folds) on train-

0 0.6 1.2 1.8 2.4 3
1
2
3
4
5
6
7
8
9

10
SVM

sa
m

pl
es

/c
ha

ra
ct

er

log10(C)

0 0.6 1.2 1.8 2.4 3
1
2
3
4
5
6
7
8
9

10
BRSVM

sa
m

pl
es

/c
ha

ra
ct

er

log10(C)

Figure 3. Fixing the regularization parameter C for the
personalized classifier. Both panels show contour plots
where lighter areas denote smaller error, and the black
lines are level curves. The top panel illustrates how the
cross validation error (averaged over all 21 users) depends
on the number of samples and on C when personalizing via
standard SVMs. The bottom panel shows the dependen-
cies for the BRSVM method.

ing set B, while varying the number of training points
per character from k = 1 . . . 10 and the regularization
strength from C = 1 . . . 1000. As expected, for both
methods accuracy improves with increasing amounts
of training data. Along the C-axis, the SVM solu-
tion (Figure 3, top) does not change for values above
C = 10, indicating that we are already in the hard
margin domain there. BRSVM (Figure 3, bottom)
seems to overfit slightly as C grows. A possible ex-
planation for this is that the biased regularizer imple-
ments a tradeoff between large margin and closeness
to w0, and so the large margin effect decays faster as
we increase C. On the other hand, BRSVM seems
more robust to strong regularization than SVM. This
is expected, since for C = 0 we still have the generic
solution, w = w0, as opposed to w = 0 (SVM).

From Figure 3 we concluded that C = 20, which was
also used for the generic recognizer, is a reasonable
value for personalization as well. We therefore kept
C = 20 unchanged for both SVM and BRSVM.

8.2. Biased Regularization vs. From-Scratch
Retraining

For the comparison experiments, we randomly drew
1 . . . 20 samples per character (n = 100) from
training set B, which yielded training sets of size

Personalized Handwriting Recognition via Biased Regularization

500 1000 1500 2000
0

0.05

0.1

0.15

0.2

training samples per class x 100

er
ro

r

A SVM
BRSVM

500 1000 1500 2000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

training samples per class x 100

p−
va

lu
e

B

Figure 4. Top: Error rates for personalized models on user-
dependent test data (test set B). The plot shows results for
both methods (averaged over 21 users), SVM and BRSVM.
The dotted lines denote one standard deviation. Bottom:
p-values for a paired t-test of the improvement being in-
significant (see text).

100, 200, . . . 2000. These data sets were used to sequen-
tially personalize the generic recognizer. Experiments
were repeated eight times for each user, each time with
a different random seed for drawing the training sub-
set. Figure 4 depicts the the mean error (average over
all 21 users) on test set B as a function of the number
of personalization samples.

8.2.1. Performance Gain

The error rates for the SVM and BRSVM versions of
the personalized recognizers, are shown in Figure 4A.
When no samples are available (far left), SVM oper-
ate at the baseline error rate corresponding to random
guessing in a 100 class problem, which is at 99% (not
shown). With BRSVM, this error rate is 10.2% and
equals that of the generic recognizer on the test set
B. The increase in this value from 8.2%, which is the

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

training samples per class x 100

er
ro

r

SVM
BRSVM

Figure 5. Error rates for the personalized model on user-
independent test data (test set A). Analogously to Figure
4 (top), the plot shows results for both methods (averaged
over 21 users), SVM and BRSVM, including error bars.

performance of the generic recognizer on the test set
A, is probably due to the set of users in set A and B
being disjoint.

BRSVM produces large improvements during person-
alization, even with few training points. With five
samples per character, it reduces the error rate to
6.1%, which is 40% lower than without personaliza-
tion (10.2%) and 45% lower than from-scratch training
(11.1%).

8.2.2. Significance of the Improvement

As the sample size increases, the error rates for the
two methods become comparable. With more than 10
or 15 samples, the differences in Figure 4A do not ap-
pear significant (one standard deviation error bars are
shown as dotted lines). The relatively high variance
however, comes from differences between users rather
than within users. To illustrate this, the bottom plot
in Figure 4 shows the p-values of a paired t-test of
the hypothesis that two matched samples, i.e. the re-
sults of both methods for a fixed user, come from dis-
tributions with equal means. Examining Figure 4B,
we note that the p-values are always well below 10−4

suggesting that even though the error bars overlap,
BRSVM produces statistically significantly lower er-
rors than from-scratch training.

Eventually, with lots of samples per class, the two
methods will become indistinguishable in terms of per-
formance. However, in a real-world setting, expecting
even 10 samples per character from a user is proba-
bly already at the limit of than what we can afford in
terms of usability.

Personalized Handwriting Recognition via Biased Regularization

8.2.3. Inter-User Generalization

Next, we tested how well the personalized recogniz-
ers generalize to users not seen during personalization.
Since the personalized recognizer is designed for use
only with one specific user, inter-user generalization is
not as important. However, given the improvements
on the personalization set observed in Section 8.2.2 we
were curious to know how much the generic recognizer
had changed during BRSVM personalization, and how
well the SVM personalized recognizer could generalize
to other users. We took the recognizers from Figure
4 (two methods, eight trials, 21 users) and measured
their performance on test set A. This corresponds to
the scenario wherein a generic user (one of the 215
users in data set A) uses one of the personalized sys-
tems. Figure 5 shows the results.

The SVM recognizer starts at 99% error on the far
left and learns user-independent information to some
extent, but the error remains above 40%. It is obvious
that samples from a single user, no matter how many
there are, are not sufficient to learn a general classifier.
As a result, the SVM personalized recognizer will do
poorly on users other than the one it was personalized
for.

On the contrary, using BRSVM, the error, starting at
10.2%, does grow, but saturates around 15.5% as we
reach 20 samples per class. Even though asymptoti-
cally both methods achieve less than 5% error on the
personalization data, the SVM error on the generic
dataset is five times higher (48.7% vs 15.5%).

8.2.4. Experiment Summary

The two main insights from the comparison experi-
ments are

1. Personalized recognizers yield higher accuracies
than a generic recognizer, even with very few
training examples.

2. BRSVM yields significantly lower errors than
SVM training, on both user-specific and user-
independent data.

9. Related Work

The absence of a standardized data set for writer adap-
tation makes it difficult to compare the results ob-
tained here to related work. Error measures also vary
from handwritten characters to handwritten words,
both with and without dictionaries and frequency pri-
ors. Nevertheless, we outline the results of some ex-
isting approaches on writer adaptation. Two neural

network based methods were presented by Matić et al.
(1993) and Platt and Matić (1997), although with lim-
ited experimental results. Both methods personalize
only the last layer of a neural network, which is an
SVM in the former case and a constructive RBF net-
work in the latter. The first approach uses 450 re-
training samples (handwritten character) from seven
users (40 classes) and yields a 2.5% character error af-
ter personalization. The performance of the generic
system is not given. The second approach was tested
on five users (72 classes) using 50-100 retraining sam-
ples (handwritten words) per user, and yielded a 45%
improvement on the word error (using a dictionary). A
larger experiment was conducted by Brakensiek et al.
(2001), who used MAP estimates and EM (expecta-
tion maximization) to adapt an HMM (hidden markov
model) for recognizing handwritten words from a dic-
tionary. They report a 39% reduction in word error
using 100 samples and 21 users.

The most relevant comparison can be made with the
work by Connell and Jain (2002). They propose an
HMM based writer adaptation scheme that uses a
whole set of models (called lexemes) for adaptation.
They report a 58% improvement in character error
from 23.8% to 10% on data from 11 users over 26
character classes. Each user provided 1,100 training
examples during personalization, which corresponds to
roughly 42 samples per character. In our experiments,
the maximum number of samples per character is much
lower (at most 20) and our method produced a 57%
improvement in character error rate (from 10.2% to
4.4% with 20 samples) through personalization. While
the two results seem similar, please note that besides
having less than half the number of training points,
our data set has four times as many classes, and that
our accuracies are in a higher absolute range where
improvements are usually harder to achieve. Still, a
direct comparison cannot be made since the data sets
are different.

10. Discussion

We have presented a new personalization method for
handwriting recognition. The main contribution of
this paper is the use of biased regularization for per-
sonalization as a principled way of trading off user-
dependent versus user-independent information. Since
the proposed method is a modification of standard
SVMs, it inherits desirable properties such as convex-
ity of the risk functional or the possibility to use ker-
nels (see Appendix A).

A comprehensive evaluation on real-world data shows
that our approach performs well in practice. First,

Personalized Handwriting Recognition via Biased Regularization

it significantly reduces the error rate, even with very
few user samples. Second, the low computation time
of both evaluation (> 1, 700 detections per second)
and retraining (< 10 seconds for 200 user samples)
makes it well-suited for real-time applications, also on
platforms with lower computation power.

Appendix A: The Kernelized Case

An important feature of SVMs and related algorithms
is that they can be turned into more general nonlinear
methods by merely using nonlinear kernel functions
k(xi,xj) instead of dot products x>i xj . To see that the
use of biased regularization preserves this property, let
the generic solution be

w0 =
m0∑

i=1

β0ik(x0i, ·). (13)

Then, replacing all dot products in (12) with kernels
yields

min 1
2

∑m
i,j=1 αiαjyiyjk(xi,xj)−

∑m
i=1 αi(1− ωi)

s.t. 0 ≤ αi ≤ C
(14)

where

ωi = yi

m0∑

j=1

β0jk(x0j ,xi). (15)

Implementing the kernelized version of Algorithm 1 is
therefore straightforward: the only required change is
to replace the offset initialization in Line 1 with (15)
and the dot products in Line 2 and 4 with k(·, ·).

Acknowledgments

The authors would like to thank John Platt, Chris
Burges, and Patrice Simard for useful comments.

References

Brakensiek, A., Kosmala, A., & Rigoll, G. (2001).
Comparing adaptation techniques for on-line hand-
writing recognition. Sixth International Conference
on Document Analysis and Recognition (pp. 486–
490).

Chang, C. C., & Lin, C. J. (2001). LIBSVM: a
library for support vector machines. Available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Connell, S. D., & Jain, A. K. (2002). Writer adaptation
for online handwriting recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
24, 329–346.

Friess, T., Cristianini, N., & Campbell, C. (1998). The
kernel adatron algorithm: a fast and simple learn-
ing procedure for support vector machine. Proceed-
ings of the 15th International Conference on Ma-
chine Learning. Morgan Kaufman.

Hsu, C. W., & Lin, C. J. (2002). A comparison on
methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13, 415–
425.

Kimeldorf, G. S., & Wahba, G. (1971). Some results on
Tchebycheffian spline functions. Journal of Mathe-
matical Analysis and Applications, 33, 82–95.

Matić, N., Guyon, I., Denker, J., & Vapnik, V. (1993).
Writer adaptation for on-line handwritten character
recognition. International Conference on Document
Analysis and Recognition. IEEE Computer Society
Press.

Platt, J. C., & Matić, N. P. (1997). A construc-
tive RBF network for writer adaptation. Advances
in Neural Information Processing Systems 9. MIT
Press.

Platt, J. (1998). Sequential minimal optimization: A
fast algorithm for training support vector machines
(Technical Report 98-14). Microsoft Research, Red-
mond, Washington.

Rowley, H. A., Goyal, M., & Bennett, J. (2002). The
effect of large training set sizes on online japanese
kanji and english cursive recognizers. International
Workshop on Frontiers in Handwriting Recognition.

Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A
generalized representer theorem. Proceedings of the
14th Annual Conference on Computational Learning
Theory (pp. 416–426). Springer Verlag.

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels. MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel
methods for pattern analysis. Cambridge University
Press.

Sollich, P. (2000). Probabilistic methods for support
vector machines. Advances in Neural Information
Processing Systems 12. MIT Press.

